10 research outputs found

    Alternative networks: toward global access to the Internet for all

    Get PDF
    It is often said that the Internet is ubiquitous in our daily lives, but this holds true only for those who can easily access it. In fact, billions of people are still digitally disconnected, as bringing connectivity to certain zones does not make a good business case. The only solution for these unsatisfied potential users is to directly undertake the building of the infrastructure required to obtaining access to the Internet, typically forming groups in order to share the corresponding cost. This article presents a global classification and a summary of the main characteristics of different Alternative Network deployments that have arisen in recent years with an aim to provide Internet services in places where mainstream network deployments do not exist or are not adequate solutions. The Global Access to the Internet for All Research Group of the Internet Research Task Force, where all authors actively participate, is interested in documenting these emerging deployments. As an outcome of this work, a classification has converged by consensus, where five criteria have been identified and, based on them, four different types of Alternative Networks have been identified and described with real-world examples. Such a classification is useful for a deeper understanding of the common characteristics behind existing and emerging Alternative Networks

    Comprehensive user requirements engineering methodology for secure and interoperable health data exchange

    Get PDF
    Background Increased digitalization of healthcare comes along with the cost of cybercrime proliferation. This results to patients’ and healthcare providers' skepticism to adopt Health Information Technologies (HIT). In Europe, this shortcoming hampers efficient cross-border health data exchange, which requires a holistic, secure and interoperable framework. This study aimed to provide the foundations for designing a secure and interoperable toolkit for cross-border health data exchange within the European Union (EU), conducted in the scope of the KONFIDO project. Particularly, we present our user requirements engineering methodology and the obtained results, driving the technical design of the KONFIDO toolkit. Methods Our methodology relied on four pillars: (a) a gap analysis study, reviewing a range of relevant projects/initiatives, technologies as well as cybersecurity strategies for HIT interoperability and cybersecurity; (b) the definition of user scenarios with major focus on cross-border health data exchange in the three pilot countries of the project; (c) a user requirements elicitation phase containing a threat analysis of the business processes entailed in the user scenarios, and (d) surveying and discussing with key stakeholders, aiming to validate the obtained outcomes and identify barriers and facilitators for HIT adoption linked with cybersecurity and interoperability. Results According to the gap analysis outcomes, full adherence with information security standards is currently not universally met. Sustainability plans shall be defined for adapting existing/evolving frameworks to the state-of-the-art. Overall, lack of integration in a holistic security approach was clearly identified. For each user scenario, we concluded with a comprehensive workflow, highlighting challenges and open issues for their application in our pilot sites. The threat analysis resulted in a set of 30 user goals in total, documented in detail. Finally, indicative barriers of HIT acceptance include lack of awareness regarding HIT risks and legislations, lack of a security-oriented culture and management commitment, as well as usability constraints, while important facilitators concern the adoption of standards and current efforts for a common EU legislation framework. Conclusions Our study provides important insights to address secure and interoperable health data exchange, while our methodological framework constitutes a paradigm for investigating diverse cybersecurity-related risks in the health sector

    CARPOOL: Connectivity Plan Routing Protocol

    No full text

    Optical PUFs as physical root of trust for blockchain-driven applications

    No full text
    In an environment where cyber attacks are increasing, both in frequency and complexity, novel ways to shield data, users, and procedures have to be envisioned. Physical unclonable functions (PUFs) are the physical equivalent of one-way mathematical transformations with the exception that their inherent physical complexity renders them resilient to cloning. One interesting deployment scenario includes PUFs as random key generators. The deterministic nature of their operation alleviates the necessity to store the keys in non-volatile means. Along the same lines, blockchain is inherently resistant to modification of the data once stored while their overall security depends on the quality and secrecy of users' keys. Here, the authors propose a novel optical PUF implementation that can be combined with private blockchain modalities in order to cyber-harden Internet of things ecosystems. PUF-related experimental results are presented, alongside implementation scenarios. © 2018 The Institution of Engineering and Technology

    Keyword-based mobile application sharing

    No full text
    The advent and wide adoption of smartphones in the second half of '00s has completely changed our everyday mobile computing experience. Tens of applications are being introduced every day in the application markets. Given the technology progress and the fact that mobile devices are becoming strong computing devices, mobile applications are expected to follow suit and become computation-heavy, bandwidth-hungry and latency-sensitive. In this paper, we introduce a new mobile computing paradigm to alleviate some of the network stress that mobile applications are already putting into the network, e.g., in case of crowded areas and events, where the mobile network effectively collapses. According to this paradigm, users can share the applications that they have on their mobile devices with nearby users that want access to processed information, which their own applications cannot provide. In a sense, then, the client application instance is also acting as a server instance in order to serve requests from nearby users. A representative example is a route-finder application in a busy station, airport, stadium or festival, or a gaming application onboard a flight. Our paradigm builds on Information-Centric Networking (ICN) and uses keyword-based requests to discover shared applications in the vicinity

    KONFIDO: An OpenNCP-based secure eHealth data exchange system

    No full text
    Allowing cross-border health-care data exchange by establishing a uniform QoS level of health-care systems across European states, represents one of the current main goals of the European Commission. For this purpose epSOS project was funded with the objective to overcome interoperability issues in patients health information exchange among European healthcare systems. A main achievement of the project was the OpenNCP platform. Settled over the results of the epSOS project, KONFIDO aims at increasing trust and security of eHealth data exchange by adopting a holistic approach, as well as at increasing awareness of security issues among the healthcare community. In this light, the paper describes the KONFIDO project’s approach and discusses its design and its representation as a system of interacting agents. It finally discusses the deployment of the provided platform

    Gap analysis for information security in interoperable solutions at a systemic level: The KONFIDO approach

    No full text
    In this paper, we present a gap analysis study focusing on interoperability of eHealth systems and services coupled with cybersecurity aspects. The study has been conducted in the scope of the KONFIDO EU-funded project, which leverages existing security tools and procedures as well as novel approaches and cutting-edge technology, such as homomorphic encryption and blockchains, in order to create a scalable and holistic paradigm for secure inner and cross-border exchange, storage and overall handling of healthcare data in compliance with legal and ethical norms. The gap analysis relied on desk research, expert opinions and interviews across four thematic areas, namely, eHealth interoperability frameworks, eHealth security software frameworks, end-user perspectives across diverse settings in KONFIDO pilot countries, as well as national cybersecurity strategies and reference reports. A standards-based template has been created as a baseline through which the analysis subjects have been analyzed. The gap analysis identified barriers and constraints as well as open issues and challenges for information security in interoperable solutions at a systemic level. Recommendations derived from the gap analysis will be brought into the forthcoming phases of KONFIDO to shape its technical solutions accordingly

    Gap Analysis for Information Security in Interoperable Solutions at a Systemic Level: The KONFIDO Approach

    No full text
    International audienceIn this paper, we present a gap analysis study focusing on interoperability of eHealth systems and services coupled with cybersecurity aspects. The study has been conducted in the scope of the KONFIDO EU-funded project, which leverages existing security tools and procedures as well as novel approaches and cutting-edge technology, such as homomorphic encryption and blockchains, in order to create a scalable and holistic paradigm for secure inner and cross-border exchange, storage and overall handling of healthcare data in compliance with legal and ethical norms. The gap analysis relied on desk research, expert opinions and interviews across four thematic areas, namely, eHealth interoperability frameworks, eHealth security software frameworks, end-user perspectives across diverse settings in KONFIDO pilot countries, as well as national cybersecurity strategies and reference reports. A standards-based template has been created as a baseline through which the analysis subjects have been analyzed. The gap analysis identified barriers and constraints as well as open issues and challenges for information security in interoperable solutions at a systemic level. Recommendations derived from the gap analysis will be brought into the forthcoming phases of KONFIDO to shape its technical solutions accordingly
    corecore